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We study the XY spin glass by large-scale Monte Carlo simulations for sizes up to 243, down to tempera-
tures below the transition temperature found in earlier work. The data for the larger sizes show more marginal
behavior than that for the smaller sizes, indicating that the lower critical dimension is close, and possibly equal
to three. We find that the spins and chiralities behave in a similar manner. We also address the optimal ratio of
“over-relaxation” to “Metropolis” sweeps in the simulation.
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I. INTRODUCTION

Following the convincing numerical work of Ballesteros
et al.,1 there has been little doubt that Ising spin glasses in
three dimensions have a finite-temperature transition. In this
paper we shall study a related model for which the existence
of a finite-temperature transition is more controversial: the
isotropic XY spin glass, which is composed of classical spins
with two components. Early work on this model in three
dimensions2,3 indicated a zero-temperature transition, or pos-
sibly a transition at a very low but nonzero temperature.
However, following the pioneering work of Villain,4 which
emphasized the role of “chiralities” �Ising-like variables
which describe the handedness of the noncollinear spin
structures�, Kawamura and Tanemura5 proposed that the
spin-glass transition only occurs at TSG=0 and that a chiral-
glass transition occurs at a finite temperature TCG. This sce-
nario requires that spins and chiralities decouple at long
length scales. Kawamura and collaborators have given nu-
merical results in favor of this scenario.6

However, the absence of a spin-glass transition in the XY
spin glass has been challenged by Maucourt and Grempel7

and subsequently Akino and Kosterlitz,8 who found evidence
for a possible finite TSG from zero-temperature domain wall
calculations. Furthermore, by studying the dynamics of the
XY spin glass in the phase representation, Granato9 found
that the “current-voltage” characteristics exhibited scaling
behavior, which he interpreted as a transition in the spins, as
well as the chiralities.

In earlier work,10 referred to as LY, Lee and one of the
present authors studied spin and chiral correlations on an
equal footing, using the method of analysis that was the most
successful for the Ising spin glass,1,11,12 namely finite-size
scaling of the correlation length. Considering a modest range
of sizes, N=L3 with L�12, LY found that the behavior of
spins and chiralities was quite similar, and they both had a
finite-temperature transition, apparently at the same tempera-
ture.

LY studied both XY and Heisenberg models, finding simi-
lar conclusions for both. However, for the Heisenberg case,
subsequent studies on much larger sizes,13,14 up to L=32,
have painted a more complex picture. The data at the lowest
temperatures and largest sizes seem rather “marginal,” i.e.,
the system is close to the lower critical dimension, where the
finite-temperature phase transition is removed by fluctua-

tions. The data for spins and chiralities are still quite similar,
although not identical, and do not seem to give compelling
evidence for spin-chirality decoupling as proposed by Kawa-
mura. In addition, Hukushima and Kawamura15 have also
studied somewhat larger sizes than LY �L�20�, but they
argued that their data are consistent with spin-chirality de-
coupling.

It is of interest to know whether the “crossover” to more
marginal behavior found for larger sizes is special to the
three-component case, or whether the same situation occurs
quite generally with vector spin glasses. In this paper, we
therefore study the XY �two-component� spin glass for larger
sizes �up to 243� than in LY �which went only up to 123�. We
find a situation that is quite similar to the Heisenberg case,
namely marginal behavior for low T and large sizes. The
behaviors of the spin-glass and chiral-glass correlation length
are very similar, more similar than was the case for the
Heisenberg spin glass, and does not appear to provide evi-
dence for spin-chirality decoupling, at least up to the sizes
studied.

Simulations on very large sizes for vector spin glasses
have been possible because including “over-relaxation”
moves, in addition to the more familiar Metropolis or heat
bath moves, speeds up equilibration.16 A second motivation
of the present work is to investigate quantitatively the opti-
mal ratio of over-relaxation to Metropolis sweeps for the XY
spin glass.

The layout of this paper is as follows. Sec. II describes the
model, the parameters of the simulations, and the finite-size
scaling approach. The results for the correlation length are
presented in Sec. III. In Sec. IV we estimate the optimal ratio
between the number of over-relaxation and Metropolis
sweeps, and Sec. V summarizes our conclusions.

II. MODEL AND ANALYSIS

We use the standard Edwards-Anderson XY spin-glass
model

H = − �
�i,j�

JijSi · S j , �1�

where Si are two-component classical vectors of unit length
at the sites of a simple cubic lattice, and Jij are nearest-
neighbor interactions with a Gaussian distribution with zero
mean and standard deviation unity. Periodic boundary condi-
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tions are applied on lattices with N=L3 spins.
The spin-glass order parameter, q���k�, at wave vector k,

is defined to be

q���k� =
1

N
�

i

Si
��1�Si

��2�eik·Ri, �2�

where � and � are spin components, and “�1�” and “�2�”
denote two identical copies of the system with the same in-
teractions. From this we determine the wave-vector-
dependent spin-glass susceptibility �SG�k� by

�SG�k� = N�
�,�

���q���k��2��av, �3�

where �¯� denotes a thermal average and �¯�av denotes an
average over disorder. The spin-glass correlation length is
then determined1,17 from

�L =
1

2 sin�kmin/2�	 �SG�0�
�SG�kmin�

− 1
1/2

, �4�

where kmin= �2� /L��1,0 ,0�.
For the XY spin glass, chirality of a square is6

�i
� =

1

2�2
�
l,m

�sgn�Jlm�sin�	l − 	m� , �5�

where 	l is the angle characterizing the direction of spin Sl,
and the prime on the sum indicates that it is over the four
bonds around the elementary plaquette perpendicular to the
� axis whose “bottom left” corner is site i. The chiral-glass
susceptibility is then given by

�CG
� �k� = N���qc

��k��2��av, �6�

where the chiral overlap qc
��k� is given by

qc
��k� =

1

N
�

i

�i
��1��i

��2�eik·Ri. �7�

We define the chiral correlation lengths �c,L
� by

�c,L
� =

1

2 sin�kmin/2�	 �CG�0�
�CG

� �kmin�
− 1
1/2

, �8�

in which �CG�k=0� is independent of �. Note that �c,L
� will,

in general, be different for �̂ along kmin �the x̂ direction� and
perpendicular to k, although this difference is very small for
large sizes. The results presented will be an average over the
three �two transverse and one longitudinal� correlation
lengths.

To equilibrate the system efficiently we perform three
types of Monte Carlo move. First we use “over-relaxation”
sweeps16 in which we sweep sequentially through the lattice,
and, at each site, compute the local field on the spin, Hi
=� jJijS j. The new value for the spin on site i is taken to be
its old value reflected about �, i.e.,

Si� = − Si + 2
Si · Hi

Hi
2 Hi. �9�

Over-relaxation sweeps preserve energy and so are also
known as microcanonical sweeps.

Second, we include Metropolis sweeps since, unlike the
over-relaxation sweeps, these do change the energy, and so
are needed to bring the system to equilibrium. For the data
presented in Secs. II and III, we do one Metropolis sweep
after every ten over-relaxation sweeps. As for the over-
relaxation case, we sweep sequentially through the lattice. To
update a given spin, we choose a trial new direction ran-
domly within a window 
�	 /2 of the current direction, and
accept this new direction with the usual Metropolis probabil-
ity, min�1,exp�−��E��, where �=1 /T and �E is the energy
difference between the trial state and the current state. We
choose the window size �	 to vary with temperature in such
a way that the acceptance ratio for Metropolis moves is in
the range of 30 to 50%.

A Metropolis sweep requires more CPU time than an
over-relaxation sweep, so we do mainly over-relaxation
sweeps, including some Metropolis sweeps only to change
the energy from time to time to ensure that the algorithm is
ergodic. In fact, as discussed in Sec. IV, including a fraction
of over-relaxation sweeps not only reduces the CPU time
�for a given total number of sweeps� but also reduces the
number of sweeps needed to equilibrate.

Finally we do “parallel tempering” sweeps,18,19 which are
necessary to prevent the system being trapped in a valley in
configuration space at low temperatures. One takes NT copies
of the system with the same bonds but at a range of different
temperatures. The minimum temperature, Tmin�T1, is the
low temperature where one wants to investigate the system
�below TSG in our case�, and the maximum, Tmax�TNT

, is
high enough that the system equilibrates very fast �well
above TSG in our case�. A parallel tempering sweep consists
of swapping the temperatures of the spin configurations at a
pair of neighboring temperatures, Ti and Ti+1, for i
=1,2 , ¯ ,TNT−1 with a probability that satisfies the detailed
balance condition. Further details on the application to vector
spin glasses can be found in Ref. 14. For the simulations in
Secs. II and III we do one parallel tempering sweep after
each Metropolis sweep. Table I gives the parameters of the
simulations used to collect the data in Secs. II and III.

To test for equilibration20 we require that data satisfy the
relation14

U = U�ql,qs� , �10�

where

U�ql,qs� =
z

2T
�ql − qs� , �11�

which is valid for a Gaussian bond distribution. Here U=
−���i,j�Jij�Si ·S j��av is the average energy per spin, ql
= �1 /Nb���i,j���Si ·S j�2�av is the “link overlap,” qs
= �1 /Nb���i,j����Si ·S j�2��av, Nb= �z /2�N is the number of
nearest-neighbor bonds, and z �=6 here� is the lattice coordi-
nation number. Equation �10� is easily derived by integrating
by parts the expression for the average energy with respect to
Jij, noting that the average �¯�av is over a Gaussian function
of the Jij’s.
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The spins are initialized in random directions so the en-
ergy, the left-hand side �LHS� of Eq. �10�, is initially close to
zero and decreases, presumably monotonically, to its equilib-
rium value as the length of the simulation increases. Hence,
the LHS of Eq. �10� will be too large if the simulation is too
short to equilibrate the system. On the other hand, the right-
hand side �RHS� of Eq. �10�,will be too small if the simula-
tion is too short because ql starts off close to zero and then
increases with MC time as the two replicas start to find the
same local minima. The quantity qs will be less dependent on
Monte Carlo time than ql since it is a local variable for a
single replica. �For the Ising case it is just a constant.� Hence,
if the simulation is too short the RHS of Eq. �10� will be too
low. In other words, the two sides of Eq. �10� are expected to
approach the common equilibrium value from opposite di-
rections as the length of the simulation increases. Only if Eq.
�10� is satisfied within small error bars do we accept the
results of a simulation.

Figure 1 shows a test to verify that Eq. �10� is satisfied at
long times. For the parameters used, L=16,T=0.265, this
occurs when the total number of �over-relaxation� sweeps
�Nsweep

OR =Nequil
OR +Nmeas

OR � is about 2
105. Figure 2 shows that
the spin and chiral correlation lengths appear to become in-
dependent of Nsweep, and hence are presumably equilibrated,
when Nsweep is larger than this same value. Hence, it appears
that when Eq. �10� is satisfied to high precision, the data for
the correlation lengths are equilibrated.

With the number of sweeps shown in Table I, Eq. �10�
was satisfied for all sizes and temperatures. The error bars
are made sufficiently small by averaging over a large number
of samples.

Since �L /L is dimensionless, it has the finite-size scaling
form1,10,17

�L

L
= X̃�L1/��T − TSG�� , �12�

where � is the correlation-length exponent. Note that there is

no power of L multiplying the scaling function X̃. By con-
trast, for the spin-glass susceptibility, �SG��SG�k=0�,
which has dimensions, the finite-size scaling form is

�SG = L2−�SGK̃�L1/��T − TSG�� , �13�

where �SG is a critical exponent. There is an expression
analogous to Eq. �12� for the chiral correlation length, and to
Eq. �13� for the chiral-glass susceptibility �CG��CG�k=0�.
For the later case, there is no reason to expect that the expo-
nents �SG and �CG are equal.

From Eq. �12� it follows that the data for �L /L for differ-
ent sizes come together at T=TSG. In addition, they are also

TABLE I. Parameters of the simulations described in Secs. II and III. Nsamp is the number of samples,
Nequil

OR is the number of over-relaxation Monte Carlo sweeps for equilibration for each of the 2NT replicas for
a single sample, and Nmeas

OR is the number of over-relaxation sweeps for measurement. The number of Me-
tropolis sweeps and the number of parallel tempering sweeps are both equal to 10% of the number of
over-relaxation sweeps. Tmin and Tmax are the lowest and highest temperatures simulated, and NT is the
number of temperatures used in the parallel tempering.

L Nsamp Nequil
OR Nmeas

OR Tmin Tmax NT

4 5000 1280 1280 0.200 1.40 11

6 5001 10240 10240 0.200 1.40 19

8 1000 40960 40960 0.200 1.40 27

12 1000 81920 81920 0.250 0.60 24

16 1006 409600 409600 0.265 0.60 32

24 461 2457600 2457600 0.265 0.45 35

FIG. 1. �Color online� Equilibration plot testing Eq. �10� for L
=16 at T=0.265. It is seen that the data for U and U�ql ,qs�, given
by Eq. �11�, come together when the total number of over-relaxation
sweeps, Nsweep

OR =Nequil
OR +Nmeas

OR , see Table I, is equal to about 2

105. These two quantities then stay at their common value, indi-
cating that equilibration has been achieved. It is seen that the energy
comes close to its equilibrium value very quickly, whereas
U�ql ,qs�, which depends on the link overlap ql between two repli-
cas, takes much longer.
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expected to splay out again on the low-T side1 if there is
spin-glass order below TSG. In a marginal situation with a
line of critical points, as in the Kosterlitz-Thouless-
Berezinskii theory of the transition in the two-dimensional
XY ferromagnet, the data for different sizes would come
together at TSG and then stick together at lower T, see for
example Fig. 3 of Ref. 1.

III. RESULTS

We studied sizes from L=4 to L=24, as shown in Table I.
The CPU time involved to get this data is about 8 Mac G5
CPU years.

The data for the spin-glass correlation length �divided by
L� are shown in Fig. 3, and the corresponding data for the
chiral-glass correlation length are shown in Fig. 4. In both
cases the data for smaller sizes intersect and splay out at
lower temperature. However, for the larger sizes the splaying
out is small, indicating close to “marginal” behavior, i.e., the
“lower critical dimension” is close to three.

The data for the spins and chiralities in Figs. 3 and 4 are
very similar, so we do not see evidence for spin-chirality
decoupling. To make clearer the similarity between the two
sets of data, we plot them both in Fig. 5, including just the
three largest sizes. The temperature, where the data merge,
decreases slightly with increasing size. We have estimated
the temperatures where the data intersect/merge for different
pairs of sizes and present the results in Table II. The tem-

peratures are seen to decrease with increasing size. If one
neglects the smallest pair of sizes �L=4 /6�, the shift is some-
what bigger for the spins than for the chiralities, but from the
data, it is not possible to reliably estimate whether or not the
intersection temperature will tend to zero for L→� for either
set of data.

In Fig. 6 we present data for the ratio of the chiral-glass
to spin-glass correlation lengths. For the largest sizes the data
intersects for T about 0.33 and then �slightly� splays out in

FIG. 2. �Color online� A plot of the spin-glass and chiral-glass
correlation lengths, �L and �L,c, divided by L as a function of the
total number of sweeps for L=16 at T=0.265. It is seen that the data
flatten off at around 2
105 sweeps, the value where the two sets of
data in Fig. 1 start to agree. This indicates that when the data in Fig.
1 agree within high precision, i.e., when Eq. �10� is satisfied, the
correlation lengths have reached their equilibrium value.

FIG. 3. �Color online� Data for �L /L, the spin-glass correlation
length divided by system size as a function of T for different system
sizes.

FIG. 4. �Color online� Data for the chiral correlation length
�averaged over longitudinal and transverse directions� divided by
system size as a function of T for different system sizes.
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the low-T side. If there is a single transition involving both
spins and chiralities, then the data would become indepen-
dent of size at the transition since both �L and �c,L are pro-
portional to L there �see Eq. �12��. If the stiffness exponents
for spins and chiralities are equal �we are not aware of any
argument for this even if there is a single transition�, then the
data would become independent of L for large L at low T. If
the stiffness exponent for chiralities is larger than that for the
spins, then the ratio would diverge in this limit. From the
data it is not possible to say for sure if the data diverge or not

at low T, but the size dependence at the larger sizes is very
weak.

In the spin-chirality decoupling scenario, the ratio would
diverge even at the transition, and there would not be a com-
mon intersection. We feel that the data of Fig. 6 reinforce our
view that if spin-chirality decoupling occurs, one would need
even larger sizes than L=24 to see it.

TABLE II. Estimated crossing temperatures for the spin- and
chiral-glass correlation lengths. The results are given to the nearest
0.005, but the uncertainties are greater than this because of the error
bars in the data itself.

Sizes Tcrossing �spins� Tcrossing �chiralities�

4/6 0.355 0.375

6/8 0.33 0.32

8/12 0.33 0.335

12/16 0.31 0.32

16/24 0.285 0.30

FIG. 5. �Color online� The same data as in Figs. 3 and 4, but
including only the largest sizes and in a somewhat expanded scale.

FIG. 6. �Color online� Data for the ratio of the chiral-glass to
the spin-glass correlation lengths for sizes from 8 to 24.

FIG. 7. �Color online� Data for the spin-glass susceptibility
�SG��SG�k=0� divided by L2−�SG, where we took �SG=−0.2 in
order to get the data to intersect �see Eq. �13��, for T around 0.30
since this is roughly where the data for �L /L and �c,L intersect/
merge for the largest sizes �see Figs. 3 and 4�.
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We also present data for the spin-glass and chiral-glass
susceptibilities in Figs. 7 and 8, respectively. Dividing by
L2−�, where � is a critical exponent, the data should intersect
at the critical temperature, see Eq. �13�, where �SG is not
necessarily equal to �CG. In order to get intersections for T

0.30, where the correlation data merge/intersect for the
largest sizes, we took �SG=−0.2 and �CG=0.1 in the plots.

Given the large corrections to scaling clearly visible in the
data for the correlation lengths, it does not appear possible to
get reliable estimate of the critical exponents, �SG and �CG,
or of the correlation-length exponent �.

IV. OPTIMIZING THE FRACTION OF OVER-
RELAXATION SWEEPS

As already noted, adding over-relaxation steps has been
observed13,14,16 to speed up equilibration. Here we look sys-
tematically at how the ratio of the number of over-relaxation
�OR� sweeps to Metropolis �MET� sweeps alters the total
number of sweeps needed to equilibrate. In Fig. 9, we plot
both sides of Eq. �10�, which are equal in equilibrium, for
different ratios of the number of OR sweeps to MET sweeps.
The data are for L=16, T=0.265. It is seen that equilibration
is considerably sped up by including OR sweeps. It seems
that doing 10 OR per MET �which was used in the results in
the earlier sections� is somewhat better than 1 OR or 40 OR.
Reference 13 argues that of order L, OR sweeps should be
done for each MET sweep “to let the microcanonical wave
run over the system.” Our data are consistent with this, al-
though it seems that the time to equilibrate is not very sen-
sitive to the precise ratio of OR to MET sweeps.

We should emphasize that including OR sweeps not only
reduces the number of sweeps to equilibrate, as seen in Fig.
9, but also reduces the CPU time by an even bigger factor

because each OR sweep runs several times faster on the com-
puter than an MET sweep.

V. CONCLUSIONS

We have studied the XY spin glass in three dimensions by
Monte Carlo simulations using larger sizes than before. We
find that the lower critical dimension is close to three. We
also find that the behavior of the spin-glass and chiral-glass
correlation lengths is strikingly similar, see Fig. 5 and, in our
view, does not support the spin-chirality decoupling scenario
at least for sizes up to L=24.

In earlier work, Maucourt and Grempel7 have studied the
3D XY spin glass using the domain-wall renormalization
group �DWRG� for sizes up to L=8. They argue that there is
a positive stiffness for the chiralities and, hence a finite-
temperature transition, while for spin-glass ordering the sys-
tem is close to its lower critical dimension. The conclusion
for chiralities is different from ours but we note that our sizes
are much larger �L�24�, and that we only see marginal be-
havior in the chiralities for L�12. Furthermore, our ap-
proach gives directly the correlation lengths, whereas for the
DWRG, ground-state energies with different boundary con-
ditions are computed, from which stiffness is inferred.

Kawamura and Li6 used Monte Carlo simulations with
sizes up to L=16 to compute the overlap function of the

FIG. 8. �Color online� Similar to Fig. 7 but for the chiral-glass
susceptibility �CG��CG�k=0�. Here we took �CG=0.1.

FIG. 9. �Color online� Results for L=16, T=0.265. The data
connected by solid lines is U�ql ,qs� in Eq. �11� for different number
of over-relaxation �OR� sweeps per Metropolis �MET� sweep as
indicated. The horizontal axis is the total number of OR plus MET
sweeps. The data connected by the dashed line is the energy U,
which should equal U�ql ,qs� in equilibrium according to Eq. �10�.
Since the energy equilibrates relatively fast, its value does not de-
pend significantly on the ratio of OR to MET sweeps for the range
of sweeps presented. The number of parallel tempering sweeps is
the same for all sets of data except for “40 OR,” where it is 1/4 as
many.
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spins and chiralities. In particular, they compute the “Binder
ratio,” which, like the ratio of the correlation length to sys-
tem size studied here, is dimensionless. The spin-glass
Binder ratio is found to monotonically decrease with increas-
ing L at each temperature. However, we feel that use of the
Binder ratio can be tricky near the lower critical dimension,
especially when the number of components of the order pa-
rameter is high. Since the spin-glass order parameter is qua-
dratic in the spins and the spins have two components, the
order parameter has four-components here. The Binder ratio
looks at the change in shape of the distribution of the �square
root of the� order parameter squared summed over all com-
ponents, when going below the transition. Because of the
central limit theorem, there would be no change in shape for
an infinite number of components. If the number is large the
change in shape is small and can easily be masked by cor-
rections to scaling, especially if the system is close to the
lower critical dimension, where corrections only fall off very
slowly with system size. The use of the Binder ratio for
vector spin glasses has also been criticized by Shirakura and
Matsubara21 �they considered explicitly the Heisenberg

case�. For the chiral-glass Binder ratio, Kawamura and Li
estimate a transition temperature from a dip in the data.
However, even if the transition is of an unconventional kind
�as they claim in order to explain the dip�, it seems to us that
the Binder ratio should still increase with increasing L at low
temperature if there is chiral-glass order. However, this is not
observed. We therefore argue that our results, which compute
directly the relevant correlation lengths, indicate that spin-
chirality decoupling does not seem to occur, at least for sizes
up to L=24. Finally, we find that equilibration is consider-
ably sped up by performing several �perhaps of order L�
over-relaxation sweeps per Metropolis sweep �see Fig. 9�.
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